Why Marshall
Leadership
Dean Geoffrey Garrett
Dean's Cabinet
Boards
Real-World Learning
Human Leadership
Tech Fluency
Global Opportunities
Diversity, Equity and Inclusion
Teaching + Innovation
Experiential Learning Center
Open Expression Statement
Programs
Undergraduate Programs
Admissions
Degrees
BS Business Administration (BUAD)
Business Emphases
BS Accounting (ACCT)
World Bachelor in Business (WBB)
BS Business of Cinematic Arts (BCA)
BS Artificial Intelligence for Business (BUAI)
Undergraduate Minors
Graduate Programs
MBA Programs
Full-Time MBA (FTMBA)
Executive MBA (EMBA)
Part-Time MBA (MBA.PM)
International MBA (IBEAR)
Online MBA (OMBA)
Specialized Masters
MS Business Administration (MSBUSAD)
MS Business Analytics (MSBA)
MS Entrepreneurship + Innovation (MSEI)
MS Finance (MSF)
MS Global Supply Chain Management (MSGSCM)
MS Marketing (MSMKT)
MS Social Entrepreneurship (MSSE)
Master of Business for Veterans (MBV)
Master of Management Studies (MMS)
Accounting Masters
Master of Accounting (MAcc)
Master of Business Taxation (MBT)
Master of Business Taxation for Working Professionals (MBT.WP)
PhD Program
Accounting
Data Sciences + Operations
Finance
Management + Organization
Marketing
Graduate Certificates
GC in Business Analytics
GC in Financial Analysis + Valuation
GC in Management Studies
GC in Marketing
GC in Optimization + Supply Chain Management
GC in Strategy + Management Consulting
GC in Sustainability + Business
GC in Technology Commercialization
GC in Library and Information Management – Online
Executive Education Redirect
Departments
Business Communication (BUCO)
Faculty
Data Sciences and Operations (DSO)
Finance + Business Economics (FBE)
Leventhal School of Accounting (ACCT)
Lloyd Greif Center for Entrepreneurial Studies (BAEP)
Management and Organization (MOR)
Marketing (MKT)
Institutes + Centers
Peter Arkley Institute for Risk Management
Brittingham Social Enterprise Lab
Center for Investment Studies
Initiative on Digital Competition
Randall R. Kendrick Global Supply Chain Institute
Center for Effective Organizations
Lloyd Greif Center for Entrepreneurial Studies
VanEck Digital Assets Initiative
Institute for Outlier Research in Business
Center for Global Innovation
Neely Center for Ethical Leadership and Decision Making
Trojan Network
Recruiting
Undergraduate
Graduate
Career Services
Giving + Support
Alumni Engagement + Resources
Student Organizations
Commencement
Mika is an assistant professor in the Department of Data Sciences and Operations at the USC Marshall School of Business. Her research focuses on developing efficient and provably good algorithms for revenue management and resource allocation problems. She is especially interested in problems with applications in online marketplaces, delivery systems, and the sharing economy. She obtained her PhD at the Cornell School of Operations Research and Information Engineering under the supervision of Huseyin Topaloglu. Prior to her PhD, Mika spent two years working in operations and management consulting at Analytics Operations Eng., Inc.
RESEARCH + PUBLICATIONS
We consider revenue management problems with heterogenous resources, each with unit capacity. An arrivingcustomer makes a booking request for a particular interval of days in the future. We offer an assortmentof resources in response to each booking request. The customer makes a choice within the assortment touse the chosen resource for her desired interval of days. The goal is to find a policy that determines anassortment of resources to offer to each customer to maximize the total expected revenue over a finite sellinghorizon. The problem has two useful features. First, each resource is unique with unit capacity. Second, eachcustomer uses the chosen resource for a number of consecutive days. We consider static policies that offereach assortment of resources with a fixed probability. We show that we can efficiently perform rollout onany static policy, allowing us to build on any static policy and construct an even better policy. Next, wedevelop two static policies, each of which is derived from linear and polynomial approximations of the valuefunctions. We give performance guarantees for both policies, so the rollout policies based on these staticpolicies inherit the same guarantee. Lastly, we develop an approach for computing an upper bound on theoptimal total expected revenue. Our results for efficient rollout, static policies, and upper bounds all exploitthe aforementioned two useful features of our problem. We use our model to manage hotel bookings based ona dataset from a real-world boutique hotel, demonstrating that our rollout approach can provide remarkablygood policies and our upper bounds can significantly improve those provided by existing techniques.
We examine the revenue–utility assortment optimization problem with the goal of finding an assortment that maximizes a linear combination of the expected revenue of the firm and the expected utility of the customer. This criterion captures the trade-off between the firm-centric objective of maximizing the expected revenue and the customer-centric objective of maximizing the expected utility. The customers choose according to the multinomial logit model, and there is a constraint on the offered assortments characterized by a totally unimodular matrix. We show that we can solve the revenue–utility assortment optimization problem by finding the assortment that maximizes only the expected revenue after adjusting the revenue of each product by the same constant. Finding the appropriate revenue adjustment requires solving a nonconvex optimization problem. We give a parametric linear program to generate a collection of candidate assortments that is guaranteed to include an optimal solution to the revenue–utility assortment optimization problem. This collection of candidate assortments also allows us to construct an efficient frontier that shows the optimal expected revenue–utility pairs as we vary the weights in the objective function. Moreover, we develop an approximation scheme that limits the number of candidate assortments while ensuring a prespecified solution quality. Finally, we discuss practical assortment optimization problems that involve totally unimodular constraints. In our computational experiments, we demonstrate that we can obtain significant improvements in the expected utility without incurring a significant loss in the expected revenue.
We consider dynamic assortment problems with reusable products, in which each arriving customer chooses a product within an offered assortment, uses the product for a random duration of time, and returns the product back to the firm to be used by other customers. The goal is to find a policy for deciding on the assortment to offer to each customer so that the total expected revenue over a finite selling horizon is maximized. The dynamic-programming formulation of this problem requires a high-dimensional state variable that keeps track of the on-hand product inventories, as well as the products that are currently in use. We present a tractable approach to compute a policy that is guaranteed to obtain at least 50% of the optimal total expected revenue. This policy is based on constructing linear approximations to the optimal value functions. When the usage duration is infinite or follows a negative binomial distribution, we also show how to efficiently perform rollout on a simple static policy. Performing rollout corresponds to using separable and nonlinear value function approximations. The resulting policy is also guaranteed to obtain at least 50% of the optimal total expected revenue. The special case of our model with infinite usage durations captures the case where the customers purchase the products outright without returning them at all. Under infinite usage durations, we give a variant of our rollout approach whose total expected revenue differs from the optimal by a factor that approaches 1 with rate cubic-root of Cmin, where Cmin is the smallest inventory of a product. We provide computational experiments based on simulated data for dynamic assortment management, as well as real parking transaction data for the city of Seattle. Our computational experiments demonstrate that the practical performance of our policies is substantially better than their performance guarantees and that performing rollout yields noticeable improvements. This paper was accepted by Yinyu Ye, optimization.